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E.2 Customizing C for scientific computing 

C is the language of choice for doing state of the art computer programming. The fea­
tures of Callow for the generation of the fastest, tightest executables possible without writing 
directly in assembly code. It also allows for the manipulation of the execution environment, 
giving the programmer more control over the run-time process than can be achieved with 
most other high-levellanguages. 

Usually, C is seen as a "programmers language," one that nonprofessionals are best to 
stay away from. This is because its speed and versatility come from exposing the programmer 
to the raw processing power of the computer, which can be difficult to manage. However, 
learning how to tame that power can be rewarded with professional quality programs, and it's 
also fun! 

I learned C for the purpose of doing the numerical simulations that form the main body 
of this work in Chapters 2, 3 and 4. In the meantime, I have acquired several years of experi­
ence at writing programs in C. During this time, I have developed a library of header files and 
utility functions that make my programming task easier. The most important concepts are 
contained in the header files; they are the subject of this section. 

One of the best features of C is the preprocessor. This is a convenient tool for the redefi­
nition of words used in programs. It allows the programmer to customize the language to his 
or her own specifications. This is the main purpose of the system of header files described 
here. 

The program that performed the quantum mechanical simulations in Chapter 4 was writ­
ten on a DOS computer in MicroSoft C, but the major calculations were performed on a 
Cray in Cray Standard C. So one of the challenges that the header library tackles is to 
establish portability between these two computers and compilers. In other words, the goal is 
to allow for code which can be compiled on either type of machine without modification. 

This is not a tutorial in C; a working knowledge of the language is assumed. For pro­
grammers who are considering learning C, I recommend starting with MicroSoft Quick C, 
which not only provides a slick programming environment, but also comes with a tutorial, C 
For Yourself, which takes you through all elements of the language. Once you become famil­
iar with the language, the reference of choice is C: A Reference Manual by Harbison and 
Steele. A little book that I found to be gem of wisdom, that seems to come from a lifetime of 
programming experience, is The Elements of Programming Style by Kernighan. For issues of 
scientific computing, there is no substitute for the amazingly comprehensive Numerical 
Recipes [S7aWHPJ series by Press, Flannery, Teukolsky and Vetterling. 
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Custom headers 

The C language proper consists of only 35 words, such as if, int, and sizeof. The main 
functionality of a commercial C package is in the library of functions that come with it. The 
core of this library will probably conform to some standard, such as the ANSI standard, for 
arguments and returned values. In addition, it will probably also include functions for non­
standard operations, such as graphics. 

In the documentation of the library functions, you will probably be told that to use a par­
ticular function you must include a particular header file. The primary purpose of the header 
file is to supply a function prototype that gives the compiler the pattern of arguments for this 
function. (Alternatively, if the function is implemented as a macro, then instead of a proto­
type, the header file will contain the code of the macro itself.) The header may also establish 
new data types used by the function, and it may define aliases for constants to be passed to 
the function as arguments. 

While it is compulsory to provide the compiler with certain information in the header 
files, it is not necessary to use the supplied header files themselves. What is described here is 
a system of header files that included in my programs instead of those supplied with either 
MicroSoft C or Cray Standard C. These headers customize the programming environment, 
while at the same time providing either compiler with the information it needs to run its 
library functions. 

Avoiding the headers headache 

In the standard procedure for writing in C, a source file starts out with a series of include 
commands for the headers needed. Which headers are included depends on what functions 
the source file calls. Every time you add a function call, you have to think about whether the 
appropriate header is already included. If you remove a function call, you might want to pare 
the include list by removing its header, but you can only do this if that header is not required 
by another function called in the same file. 

Instead of worrying about which headers to include in the source files, it is easier to have 
one set of header files that is included in all source files. The following set of files, which are 
described individually below, provides all the functionality needed for any C program, as well 
as the customization mentioned above: 

• keywords.h 
• limits.h and float.h 
• constant.h 
• keystrok.h 
• types.h 
• variable.h 
• function.h 
• macros.h 
• prototyp.h 

Rather than including these files individually, and in order to reserve the freedom to reorga­
nize the files, the include commands for these files are kept in a master header file. It is that 
file that is included in all of my source files. 
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Making C pretty: keywords.h 

Personally, I like my programs to read as much like English as possible. The following 
list of preprocessor definitions allows a dramatic improvement in the appearance of my C 
code: 

#define if if( 
#define then ) 
#define is --
#define isnt != 
#define set 
#define to = 

#define not 
#define and && 
#define or II 
#define NOT 
#define AND & 
#define OR I 
#definexOR 
#define mod % 

This allows the incomprehensible C gibberish: 

if(a==O II b!=(q%5))x=y; 

to be rendered as the more friendly: 

if a is 0 orb isnt (q mod 5) then set x toy; 

The latter version may compile a microsecond or so slower because it requires the compiler 
to look up several definitions. However, the resulting object code for both versions will be 
absolutely identical. There is no run-time disadvantage to writing C in this way. 

One of the advantages of this set of symbols is that it avoids the common error of testing 
equality with the assignment operator, i.e., of writing"=" in place of"==" by mistake. 

Aside from vocabulary, it is also easier to understand a program if you can see it all on 
the screen at once. I always try to write programs so that the code for each function takes up 
no more than one screen. There is one keyword, unsigned, that takes up far too much space 
on the screen for its significance, and tends to appear frequently. The following definitions 
keep declarations of unsigned integers from monopolizing the screen: 

#define CharU 
#define ShortU 
#define IntU 
#define LongU 

unsigned char 
unsigned short 
unsigned int 
unsigned long 

Finally, I begin in this file a practice carried out at great length in the file function.h, de­
scribed below. When a word is formed from two or more English words, I like to make the 
result easier to read by capitalizing the component words: 
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#define GoTo 
#define SizeOf 
#define TypeDef 

go to 
sizeof 
typedef 
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Note that all of these definitions serve only to give me the freedom to use the new forms. 
The original symbols, such as "goto" and"==" are still in service. It's just that I choose never 
to use them directly. 

Defining numeric data types: limits.h and float.h 

These are the only noncustom files included in the header list. They are ANSI standard 
files provided with every compiler to define the numeric data types. 

Machine-specific constants: constant.h 

Here are defined constants that are used elsewhere to determine whether the program is 
running in DOS on an IBM compatible or in Unix on a Cray. The list of constants and tests 
could be expanded almost without limit to allow for other compiling and operating environ­
ments. 

#define Intel8086Family 
#define CrayMachine 
#define MS DOS 
#define Unix 
#define MicroSoftCompiler 
#define CrayCompiler 

#if defined(M _ 186) 
#define CPU 
#define OperatingSystem 
#define compiler 

#elif defined(_ CRA Y) 
#define CPU 
#if defined(_ UNICOS) 

1 
2 
1 
2 
1 
2 

#define OperatingSystem 
#endif 

Intel8086Family 
MS DOS 
MicroSoft Compiler 

CrayMachine 

Unix 

#define compiler CrayCompiler 
#endif 

#if not (defined(CPU) and defined(OperatingSystem)) 
#error "The CPU, operating system and compiler have not all been identified." 

#endif 

The constants M_I86, _ CRA Y and_ UNICOS are called predefined macros, and are provided 
by the respective compilers. 

If the machine in use is of the DOS type, then it has segmented memory addresses, and 
certain code and data will need to be defined as near or far. If the machine is a Cray, then any 
appearance of these special keywords will be ignored: 
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#if CPU is Intel8086Family and compiler is MicroSoftCompiler and not defined(NO _EXT_KEYS) 

#define near near 
#define far far 

#else 
#define near 
#define far 

#endif 

The all-important null pointer is: 

#define null ((void *)0) 
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This definition appears in many of the standard header files because it is needed by many 
different types of function. Those files have to provide a test to see if some other file has 
already made the definition, but that is not necessary here because this file is only included 
once per source file. Those files also generally follow the convention of naming constants in 
all-capitals, and call this "NULL." There is no danger in breaking that convention, as long as 
all your source files use the name given in the definition. If you wanted to be able to also 
compile programs written in the standard convention, you could add "#define NULL null." 

Next this file defines the color values and color indices specific to DOS machines: 

#define cvBlack 
#define cvBlue 
etc. 

OL 
Ox2AOOOOL 

#define ciBlack 0 
#define ciBlue 1 
etc. 

Not all vocabulary has to have unique meanings. Here is a definition of a pair of syn­
onyms for the two Boolean constants, true and false, which are themselves defined later in the 
file types.h. 

#define yes 
#define no 

true 
false 

This file also contains important physical constants, such as: 

#define pi 
#definec 
#define hBar 

3.14159265358979323846264338327950288 
(2.99792458E10) 
(1.0545887E-27) 

If you decide to use the second definition in your own header file, be careful not to give any 
variables in your programs the name "c." 

Finally, this file defines the often-used constants, 27r and 1r/2. However, the preprocessor 
is not equipped to do floating point arithmetic, so they are defined as variables. Alternatively, 
you could do the arithmetic yourself and enter the result here in a #define command. I prefer 
to let the computer do the arithmetic: 
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#if ThislsTheMainSourceFile 
double TwoPi to (2. * pi); 
double PiBy2 to (pi I 2.); 

#else 
extern double TwoPi; 
extern double PiBy2; 

#endif 
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To accommodate this code, and some other similar examples below, the main source file of 
all the files making up the program includes the command "#define ThislsTheMainSource­
File 1." 

In the definition of TwoPi and PiBy2, note the use of the customized assignment opera­
tor, "to" for"=". 

Finding the right keys: keystrok.h 

This file contains definitions designed to make it easy to refer to operator keystrokes 
other than those represented by the usual set of printable characters. This includes both the 
standard ASCII keys, such as: 

#define kCtrlG 0x07 
#define kRubout 0x08 
#define kTab 0x09 
#define kCtrlEnter OxOa 
etc. 

and special keys specific to DOS: 

#if OperatingSystem is MS _DOS 
#define kHome Ox4700 
#define kUp Ox4800 
#define kPgUp Ox4900 
#define kLeft Ox4b00 
etc. 

#endif 

Code intended for execution on a DOS machine can refer to both sets. Code to be executed 
on the Cray must only refer to the first. 
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Setting up data types: types.h 

This file contains all the type definitions. First, we need Boo leans: 

TypeDef enum {false, true} Boole; 

Next, several kinds of pairs are often useful, such as a pair of bytes, a pair of "shorts," and 
two precisions of complex numbers: 

TypeDef ShortU PairB; 
TypeDef struct {short el, e2;} PairS; 
TypeDef struct {float Re, Im;} ComplexF; 
TypeDefstruct {double Re, Im;} ComplexD; 

A very important structure type is the one that holds data on an open stream, such as a 
file. The ANSI standard calls this "FILE," but I prefer "Stream Type" because that is what it 
is: 

TypeDef struct 
#if compiler is MicroSoft Compiler 

{CharU *pointer; int count; CharU *base, flags, handle;} 
#elif compiler is CrayCompiler 

{int count; CharU *pointer, *base; ShortU flags; CharU handle; long _ftoff;} 

#else 
#error "Sorry, but I don't recognize the compiler." 

#endif 
Stream Type; 

Note the use of conditional compilation to account for the fact that Cray and MicroSoft 
define their stream structures differently. In this code, you are free to give the structure 
elements any names you like, but they must be listed in the order shown and have the indi­
vidual types shown because already-compiled code in the Cray and MicroSoft libraries will be 
looking for structure elements of those types at those positions. 

Finally, this file defines a special structure that is useful for holding data on the environ­
ment and other globally useful information: 

TypeDef struct 
{Boole initialized; char calls[lSO]; StreamType *boss, *read, *write; 
Boole NewKeyboard; VideoType video; short pause, beep, verbosity, skip; 
} EnvType; 

#if ThisisTheMainSourceFile 
EnvType EnvData to {0}; 

#else 
extern EnvType EnvData; 

#endif 

The use of each of the elements of EnvData is quite involved, and I will not go into that here. 
The point of introducing this object is that it helps to have a place somewhere in memory 
where useful data can be accessed and updated without having to pass the address of that 
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location around as an argument to every function. It is best to have all of this data in one 
structure because that promotes a more organized style of programming than if each of these 
elements were an independent global variable. 

Predefined global variables: variable.h 

C has two standard global variables. "errno" is a standard name which will be known to 
the linker, so it must be used. However, it is perfectly healthy to also define and use a syn­
onym: 

#define ErrNo 
extern int near 

errno 
Err No; 

Both MicroSoft and Cray use an input/output buffer array called "_iob". This is not part 
of the ANSI standard, so other compilers may require special handling in defining these 
special streams: 

#define keyboard 
#define display 
#define ErrorOutput 
#define AuxDevice 
#define printer 

(&_iob[O]) 
(&_iob[l]) 
(&_iob[2]) 
(&_iob[3]) 
(&_iob[4]) 

extern StreamType near _iob[); 

/* stdin */ 
/* stdout *I 
I* stderr */ 
/* stdaux */ 
I* stdprn */ 

The names in comments on the right are the ANSI-styled symbols for these streams. The 
symbol "_iob" must be used here because it will be known to both the MicroSoft and Cray 
linkers. Elsewhere, the streams may be called by the names given here, "keyboard," "display," 
etc. 

Note the use of the special keyword "near" in the declarations of both externals, Err No 
and _iob. This keyword is defined to be ignored by the Cray compiler. (See constant.h, 
above.) 

Making function names more friendly: function.h 

This is the simplest header file. All it contains is aliases for functions whose given names 
I don't like. Some functions are renamed just to capitalize component words that go to make 
up the names. Others are given new names that seem to better describe what they do. For 
example: 

#define CAbs 
#define CAlloc 
#define CPUTime 
#define execute 
#define FClose 
#define FPrintF 
#define FractionPart 
#define GetPID 

cabs 
calloc 
clock 
execl 
fclose 
fprintf 
modf 
getpid 
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#define InvSin 
#define LocalTime 
#define OutByte 
#define remainder 
#define SqRoot 
#define StrNCmp 
#define StrToDbl 
#define StrTolnt 

as in 
local time 
outp 
fmod 
sqrt 
strncmp 
strtod 
atoi 

Where the work gets done: macros.h 
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The wonderful thing about the #define command is that you can use it for the most triv­
ial purpose of changing the name of a function, or you can use it define very sophisticated 
macros. Below are examples of some macros that I have found particularly useful. 

Conditional debugging 

C is famous for its speed and versatility, but those features come at the cost of exposure 
to dangers that other languages shield the programmer from. For example, there is no check 
for arithmetic overflow, so incrementing an integer too many times can lead to unpredictable 
results. Arrays have no defined boundaries, so errant data operations can modify the status of 
unexpected memory locations. The responsibility falls upon the programmer to anticipate 
and handle overflows and to perform array operations within the correct bounds. 

Writing in C does not mean that programs cannot have error checking. It means that the 
decision of where and when to check for errors is left to the discretion of the programmer. 
The optimal way to write correct code that functions as intended and yet does not waste time 
checking for errors that cannot happen, is to implement a two step strategy: 

• Apply stringent error checking while writing and debugging the program. 
• When the program has been fully tested, reduce the checking to just handle operator 

error. 
This variable level of error checking can be implemented by combining the preprocessor's 
features of macro definition and conditional compilation. 

For example, it is a good idea to check all of the arguments on entry into a function, to 
ensure that they have values that fall within expected ranges, and to make sure that pointers 
are not null. Another good idea is for every switch statement that is expected to route 
through one of its case's to end with a default statement that flags an error. It is also good 
practice to check the value of ErrNo every so often to see if an unexpected error has oc­
curred1. However, all of these procedures will slow a program down. That is where condi­
tional compilation comes in. 

The following are examples of error-checking macros. They use a messaging system 
called error which is not described here. CheckForError issues a message if Err No is nonzero. 
CheckForNull prints a message if its argument is a null pointer (or a zero integer). Check­
Boolean and CheckRange complain if their respective first arguments do not have appropri-

1 Surprisingly, MicroSoft does not anticipate this practice. At the startup of any executable, the value of ErrNo is 
unpredictable (Paul E., MicroSoft technical support, 89 0815]. 
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ate values. And CaseError is designed to be called by a default statement that should never be 
executed. 

The important thing about these macros is that they only exist if the symbol debugging is 
defined and nonzero. If debugging is undefined then the compiler passes over every occur­
rence of these macros without generating any object code. This means that you can install 
these macros throughout your program without concern for degrading its ultimate perfor­
mance. 

Once a program is debugged, it is better to turn the macros off by not defining debugging 
than to remove them from the source file. Not only is it easier, but also, when you come back 
to the program later to make modifications you will want to debug it again, and the macros 
will be sitting there ready to go to work. 

#if debugging 
#define CheckForError(label) if Err No then error("ErrNo", label, ErrNo ); else 
#define CheckForNull(pointer) \ 

if pointer is null then error("null", #pointer); else 
#define CheckBoolean(Boolean) \ 

if not lsEither(Boolean, 0, 1) then \ 
error("! have '%s' = %i when it should be either 0 or 1.", #Boolean, Boolean); \ 

else 
#define CheckRange(value, low, high) \ 

if not lsOrdered(low, value, high) then \ 
error("range",#value,( double )(value),( double )(low),( double )(high));\ 

else 
#define CaseError(variable) error("case", #variable, variable, variable) 

#else 
#define CheckForError(label) 
#define CheckForNull(pointer) 
#define CheckBoolean(Boolean) 
#define CheckRange(value, low, high) 
#define CaseError(variable) error("case: "#variable) 

#endif 

Here is another example of conditional debugging. Infinite loops are particularly frus­
trating for two reasons. First, the only way to break into one (unless you've left open an 
interrupt mechanism) is to turn off the computer. But worse, if a loop is not generating some 
output, then getting stuck in it is often indistinguishable from having the computer hang for 
any other reason, so they can be hard to diagnose. The following code is designed as a 
replacement for the for statement in C, to prevent infinite loops. 

#if debugging 
#define loop(Looplnitializer, Loop While, Looplterate, LoopAction) \ 

{double LoopCount to 0., LoopQuit to lES; \ 
for ((Looplnitializer); (Loop While); (Loop Iterate), LoopCount+ +) \ 

{LoopAction; \ 
if LoopCount > LoopQuit then \ 

{if error("loop",LoopCount,#Looplnitializer,#LoopWhile,#Looplterate) \ 
is 'R' then break; else LoopCount to 0.;} \ 

} } 
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#else 
#if ThislsTheMainSourceFile 

double LoopQuit; 
#else 

extern double LoopQuit; 
#endif 

115 

#define loop(Looplnitializer, Loop While, Looplterate, LoopAction) \ 
for((Looplnitializer); (LoopWhile); (Looplterate)) {LoopAction;} 

#endif 

The first three arguments are expressions, and serve the role of the three expressions appear­
ing in a for statement. The last argument is a statement, and serves the role of the body of the 
for. A semicolon is optional on the statement in the last argument, and on the loop macro 
itself. Compound expressions in the first three arguments must be enclosed in round brack­
ets. Braces on a compound statement in the last argument are optional. The arguments are 
separated by commas, not by semicolons as in for. 

The difference between loop and for is that when debugging is defined and nonzero, loop 
keeps track of how many times it has iterated, and issues a warning if it goes on for too long. 
"Too long" means, by default, more that 100,000 times; this can be reset by assigning a 
different value to LoopQuit in Looplnitializer, as in: 

loop( (x to 2, LoopQuit to 1E9), x < 1E6, x * x, null); 

If the warning is issued, the loop can be continued by pressing "r" (lower case), or exited by 
pressing "R" (capital). (This is because of the design of e"or, which allows processing to 
Resume if "R" (either case) is pressed, and otherwise terminates processing.) 

If debugging is not defined, then loop is exactly identical to for. There is no efficiency cost, 
in terms of either speed or size, for using loop with debugging off. The reason LoopQuit is 
defined as a global when debugging is off is so the program will not choke on code such as the 
example above that sets an alternate value for LoopQuit. If debugging is off, then changing the 
size of LoopQuit has no effect. 

The final example of conditional debugging demonstrates checking the return value of a 
function and issuing a message (through e"or) if the value is not the expected one. But this 
particular example also perform another operation, which I encourage you to make note of if 
you are just getting started in C, because I found this to be a very sly and destructive source of 
error. If your program writes to a null pointer and you don't know about it (which can hap­
pen if the write is unintended, rather than just to a bad address) the effect is a "null pointer 
assignment." (/Write returns the correct count.) In MicroSoft C, this will cause a run-time 
error message after program termination, and only if the program is compiled with pointer 
checking on. Otherwise the error will go undetected, and will have unpredictable effects. If 
the message is given, it will come without any clue as to when or where or how the bad 
assignment took place. Null pointer assignment bugs are very hard to find. The following 
code is designed to catch one common cause of them: 
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#if debugging 
#define put( stream, source, size, count) \ 

{CheckForNull(stream); \ 
iffwrite(source, size, count, stream) isnt count then \ 

error("put", stream, #stream, count, size, #source, #stream);} 
#else 

#define put( stream, source, size, count) fwrite(source, size, count, stream) 
#endif 

Logic and arithmetic 

Here are three simple macros that are useful under various circumstances: 

#define IsEither(a, b, c) 
#define IsBoth(a, b, c) 
#define until( expression) 

((a) is (b) or (a) is (c)) 
((a) is (b) and (a) is (c)) 
while (not (expression)) 

The first two work only with integers or pointers. Generally, equality of floating point num­
bers cannot be safely tested with is ( = = ). 

Many simple but important arithmetic operations are best performed with macros. Here 
are some examples: 

#if compiler is MicroSoftCompiler 
#define mag(x) ((double)(x) > 0.? (x): -(x)) 

#else 
#define mag(x) ((x) > 0? (x): -(x)) 

#endif 
#define max( a, b) ((a) > (b)? (a): (b)) 
#define min(a, b) ((a)< (b)? (a): (b)) 
#define up( a, b) if (b) > (a) then (a) to (b); else 
#define down( a, b) if (b) < (a) then (a) to (b); else 
#define power(pwr, base, n) \ 
{short MCRi; pwr to base; for (MCRi to 2; MCRi < = n; MCRi + +) pwr * = base;} 

The important considerations to keep in mind are: 
• Macros are faster than function calls, but complex ones will increase the size of a 

program. 
• Beware of unwanted side effects. For example, mag(x+ +) will increment x twice. 

There are some useful tricks for manipulating complex numbers and matrices in C. I 
learned most of mine from Numerical Recipes in C [S7aWHP, Appendices o, EJ, to which I defer this 
discussion on those subjects. 
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Stream operations 

Reading and writing to and from files can often be simplified using macros. The follow­
ing examples use the macro put defined above under "Conditional debugging." 

#define Putltem(stream, item) put(stream, &(item), SizeOf(item), 1) 
#define Putltems(stream, item, count) put( stream, &(item), SizeOf(item),count) 
#define PutList(stream, item, count) put( stream, &(item), SizeOf(item)*count, 1) 
#define PutString(stream, string) put( stream, string, StrLen(string), 1) 
#define PutAt(stream, position, source, size, count) \ 

{seek( stream, position); put( stream, source, size, count);} 

The quintessential header file: prototyp.h 

This file contains what make up the main contents of most of the standard header files, 
that is, the function prototypes. Included are prototypes for all of the functions that are ever 
used in any of my programs, so it serves universally, although personally. If at some point I 
write my own function or macro to replace a standard library function, then I remove the 
prototype from this file. That way, if I inadvertently call the standard function, the compiler 
will warn me that there is no prototype for it. 

Beyond headers 

That completes the description of the header library. But it is often useful to define 
macros in regular source files as well. 

Collapsing code 

Any body of code that repeats the same sequence of steps can be collapsed into a series 
of macro calls. If the sequence of steps is fairly long and complicated, then it is better to 
define it as a function rather than a macro. But for fairly simple but repetitive operations, 
macros are very handy. 

The following example is used in a program that allows the operator to change the values 
of data items on the screen. Any one item can be changed before moving on to the next, but 
the operator can move around the screen at will before changing anything. The program 
looks for a flag that indicates that something has changed. Then it looks through all the fields 
on the screen to see which one is current, and changes the data for that item. The search 
through the fields is coded as: 

if window->field is item1 then data->item1 to *(double *)item1->value; 
else ifwindow->field is item2 then data->item2 to *(double *)item2->value; 
else ifwindow->field is item3 then data->item3 to *(double *)item3->value; 
else ... 

where the itemn's are the names of fields on the screen as well as elements of the structure 
data, and window- >field is the current field. This long list of repetitive code can be replaced 
by: 
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#define update(item) \ 
ifwindow->field is item then data->item to *(double *)item->value 

update(iteml); else update(item2); else update(item3); else ... 

#undef update 

Collapsing code in this way can go a long way to making programs easier to understand. 
But be careful about indiscriminate use of macros. Remember that every macro call expands 
into the full text of the macro before it is compiled. So if your macros are very long and 
complicated, or if you often have several layers of nested macro calls, then a segment of code 
that appears on the screen as very short may compile into a lot of object code. 




